کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588512 1334187 2007 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On an extension of Galligo's theorem concerning the Borel-fixed points on the Hilbert scheme
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On an extension of Galligo's theorem concerning the Borel-fixed points on the Hilbert scheme
چکیده انگلیسی

Given an ideal I and a weight vector w which partially orders monomials we can consider the initial ideal inw(I) which has the same Hilbert function. A well known construction carries this out via a one-parameter subgroup of a GLn+1 which can then be viewed as a curve on the corresponding Hilbert scheme. Galligo [A. Galligo, Théorème de division et stabilité en géométrie analytique locale, Ann. Inst. Fourier (Grenoble) 29 (2) (1979) 107–184, vii] proved that if I is in generic coordinates, and if w induces a monomial order up to a large enough degree, then inw(I) is fixed by the action of the Borel subgroup of upper-triangular matrices. We prove that the direction the path approaches this Borel-fixed point on the Hilbert scheme is also Borel-fixed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 318, Issue 1, 1 December 2007, Pages 47-67