کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588532 1334187 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uppers to zero and semistar operations in polynomial rings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Uppers to zero and semistar operations in polynomial rings
چکیده انگلیسی

Given a stable semistar operation of finite type ⋆ on an integral domain D, we show that it is possible to define in a canonical way a stable semistar operation of finite type [⋆] on the polynomial ring D[X], such that D is a ⋆-quasi-Prüfer domain if and only if each upper to zero in D[X] is a quasi-[⋆]-maximal ideal. This result completes the investigation initiated by Houston–Malik–Mott [E. Houston, S. Malik, J. Mott, Characterizations of ∗-multiplication domains, Canad. Math. Bull. 27 (1984) 48–52, Section 2. [17], ] in the star operation setting. Moreover, we show that D is a Prüfer ⋆-multiplication (respectively, a ⋆-Noetherian; a ⋆-Dedekind) domain if and only if D[X] is a Prüfer [⋆]-multiplication (respectively, a [⋆]-Noetherian; a [⋆]-Dedekind) domain. As an application of the techniques introduced here, we obtain a new interpretation of the Gabriel–Popescu localizing systems of finite type on an integral domain D (Problem 45 of [S.T. Chapman, S. Glaz, One hundred problems in commutative ring theory, in: S.T. Chapman, S. Glaz (Eds.), Non-Noetherian Commutative Ring Theory, Kluwer Academic Publishers, 2000, pp. 459–476. [4]]), in terms of multiplicatively closed sets of the polynomial ring D[X].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 318, Issue 1, 1 December 2007, Pages 484-493