کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588611 1334190 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimal algebras with respect to their ∗-exponent
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Minimal algebras with respect to their ∗-exponent
چکیده انگلیسی

Given an m-tuple (A1,…,Am) of finite dimensional ∗-simple algebras we introduce a block-triangular matrix algebra with involution, denoted as UT∗(A1,…,Am), where each Ai can be embedded as ∗-algebra. We describe the T∗-ideal of R=UT∗(A1,…,Am) in terms of the ideals T∗(Ai) and prove that any algebra with involution which is minimal with respect to its ∗-exponent is ∗-PI equivalent to R for a suitable choice of (A1,…,Am). Moreover we show that if m=1 or Ai=F for all i then R itself is a ∗-minimal algebra. The assumption for the base field F is characteristic zero.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 317, Issue 2, 15 November 2007, Pages 642-657