کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588620 1334190 2007 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Projectively full radical ideals in integral extension rings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Projectively full radical ideals in integral extension rings
چکیده انگلیسی

Let R be a Noetherian commutative ring with unit 1≠0, and let I be a regular proper ideal of R. The main question considered in this paper is whether there exists a finite integral extension ring A of R for which the nilradical of IA is a projectively full ideal that is projectively equivalent to IA. A related and stronger question that we also consider is whether there exists a finite integral extension ring A of R for which the nilradical J of IA is projectively equivalent to IA and for which all the Rees integers of J are one. The following two results are special cases of the main theorems in the present paper: (1) If R is a Noetherian integral domain, then there exists a finite integral extension ring A of R such that the nilradical of IA is projectively equivalent to IA. (2) If also R contains a field of characteristic zero, then there exists a finite free integral extension ring A of R for which the nilradical of IA is a projectively full ideal that is projectively equivalent to IA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 317, Issue 2, 15 November 2007, Pages 833-850