کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588665 1334192 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Notes on Hong's conjectures of real number power LCM matrices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Notes on Hong's conjectures of real number power LCM matrices
چکیده انگلیسی

Let e be a real number and S={x1,…,xn} be a set of n distinct positive integers. The set S is said to be gcd-closed (respectively lcm-closed) if (xi,xj)∈S (respectively [xi,xj]∈S) for all 1⩽i,j⩽n. The matrix having eth power e[xi,xj] of the least common multiple of xi and xj as its i,j-entry is called the eth power least common multiple (LCM) matrix, denoted by (e[xi,xj]) (or abbreviated by (e[S])). In this paper, we show that for any real number e⩾1 and n⩽7, the power LCM matrix (e[xi,xj]) defined on any gcd-closed (respectively lcm-closed) set S={x1,…,xn} is nonsingular. This confirms partially two conjectures raised by Hong in [S. Hong, Nonsingularity of matrices associated with classes of arithmetical functions, J. Algebra 281 (2004) 1–14]. Similar results are established for reciprocal real number power GCD matrices.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 315, Issue 2, 15 September 2007, Pages 654-664