کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588693 1334193 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Relative Galois module structure of octahedral extensions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Relative Galois module structure of octahedral extensions
چکیده انگلیسی

Let k be a number field, Ok its ring of integers and Cl(k) its class group. Let Γ be the symmetric (octahedral) group S4. Let M be a maximal Ok-order in the semisimple algebra k[Γ] containing Ok[Γ], Cl(M) its locally free class group, and Cl○(M) the kernel of the morphism Cl(M)→Cl(k) induced by the augmentation M→Ok. Let N/k be a Galois extension with Galois group isomorphic to Γ, and ON the ring of integers of N. When N/k is tame (i.e., at most tamely ramified), extension of scalars allows us to assign to ON the class of M⊗Ok[Γ]ON, denoted [M⊗Ok[Γ]ON], in Cl(M). We define the set R(M) of realizable classes to be the set of classes c∈Cl(M) such that there exists a Galois extension N/k which is tame, with Galois group isomorphic to Γ, and for which [M⊗Ok[Γ]ON]=c. In the present article, we prove that R(M) is the subgroup Cl○(M) of Cl(M) provided that the class number of k is odd.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 312, Issue 2, 15 June 2007, Pages 590-601