کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4588709 | 1334193 | 2007 | 11 صفحه PDF | دانلود رایگان |

A finite-dimensional Lie algebra L over a field F is called elementary if each of its subalgebras has trivial Frattini ideal; it is an A-algebra if every nilpotent subalgebra is abelian. The present paper is primarily concerned with the classification of elementary Lie algebras. In particular, we provide a complete list in the case when F is algebraically closed and of characteristic different from 2, 3, reduce the classification over fields of characteristic 0 to the description of elementary semisimple Lie algebras, and identify the latter in the case when F is the real field. Additionally it is shown that over fields of characteristic 0 every elementary Lie algebra is almost algebraic; in fact, if L has no non-zero semisimple ideals, then it is elementary if and only if it is an almost algebraic A-algebra.
Journal: Journal of Algebra - Volume 312, Issue 2, 15 June 2007, Pages 891-901