کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588829 1334197 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cayley's Theorem and Hopf Galois structures for semidirect products of cyclic groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Cayley's Theorem and Hopf Galois structures for semidirect products of cyclic groups
چکیده انگلیسی

For G any finite group, the left and right regular representations λ, respectively ρ of G into Perm(G) map G into InHol(G)=ρ(G)⋅Inn(G). We determine regular embeddings of G into InHol(G) modulo equivalence by conjugation in Hol(G) by automorphisms of G, for groups G that are semidirect products G=Zh⋊Zk of cyclic groups and have trivial centers. If h is the power of an odd prime p, then the number of equivalence classes of regular embeddings of G into InHol(G) is equal to twice the number of fixed-point free endomorphisms of G, and we determine that number. Each equivalence class of regular embeddings determines a Hopf Galois structure on a Galois extension of fields L/K with Galois group G. We show that if H1 is the Hopf algebra that gives the standard non-classical Hopf Galois structure on L/K, then H1 gives a different Hopf Galois structure on L/K for each fixed-point free endomorphism of G.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 308, Issue 1, 1 February 2007, Pages 236-251