کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588961 1334202 2007 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Constructing Clifford quantum P3s with finitely many points
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Constructing Clifford quantum P3s with finitely many points
چکیده انگلیسی

We present an algebro-geometric technique for constructing regular Clifford algebras A of global dimension four with associated point scheme consisting of a prespecified finite number of points. In particular, if A has more than one point in its point scheme, then the number of points in the point scheme can be obtained from the number of intersection points of two planar cubic divisors; these cubic divisors correspond to regular Clifford subalgebras of A of global dimension three. If A has exactly a finite number, n, of distinct points in its point scheme, then n∈{1,3,4,5,…,13,14,16,18,20} and all these possibilities occur. We also prove that if a regular Clifford algebra R of global dimension d⩾2 has exactly a finite number, n, of distinct isomorphism classes of point modules, then n is odd if and only if R is an Ore extension of a regular Clifford subalgebra of R of global dimension d−1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 312, Issue 1, 1 June 2007, Pages 86-110