کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588984 1334202 2007 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Matroids and Geometric Invariant Theory of torus actions on flag spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Matroids and Geometric Invariant Theory of torus actions on flag spaces
چکیده انگلیسی

Let F//T be a Geometric Invariant Theory quotient of a partial flag variety F=SL(n,C)/P by the action t⋅gP=tgP of the maximal torus T in SL(n,C), where P is a parabolic subgroup containing T. The construction of F//T depends upon the choice of a T-linearized line bundle L of F. This note concerns the case L=Lλ is a very ample homogeneous line bundle determined by a dominant weight λ, meaning the associated character extends to P and to no larger parabolic subgroup.If Vλ denotes the irreducible representation of SL(n,C) with highest weight λ, and Vλ[μ] is the isotypic component corresponding to a weight μ of the torus, then F//T is equal to . The weight μ is used to twist the canonical T-linearization of Lλ, where the canonical T-linearization of Lλ is obtained by restricting the unique SL(n,C)-linearization of Lλ to T.We apply a theorem of Gel'fand, Goresky, MacPherson, and Serganova concerning matroid polytopes to show that if Vλ[μ]≠0 then one gets a well-defined map F//T→CPdimVλ[μ]−1 by taking any basis of Vλ[μ]. Equivalently, all the semistable partial flags are detected by degree one T-invariants provided Vλ[μ] is nonzero.We also show that the closure of any T-orbit in F is projectively normal for the projective embedding .

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 312, Issue 1, 1 June 2007, Pages 527-541