کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588996 1334203 2006 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Zero-divisor graphs of non-commutative rings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Zero-divisor graphs of non-commutative rings
چکیده انگلیسی

In a manner analogous to the commutative case, the zero-divisor graph of a non-commutative ring R can be defined as the directed graph Γ(R) that its vertices are all non-zero zero-divisors of R in which for any two distinct vertices x and y, x→y is an edge if and only if xy=0. We investigate the interplay between the ring-theoretic properties of R and the graph-theoretic properties of Γ(R). In this paper it is shown that, with finitely many exceptions, if R is a ring and S is a finite semisimple ring which is not a field and Γ(R)≃Γ(S), then R≃S. For any finite field F and each integer n⩾2, we prove that if R is a ring and Γ(R)≃Γ(Mn(F)), then R≃Mn(F). Redmond defined the simple undirected graph obtaining by deleting all directions on the edges in Γ(R). We classify all ring R whose is a complete graph, a bipartite graph or a tree.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 296, Issue 2, 15 February 2006, Pages 462-479