کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4589142 1334208 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
When is the 2×2 matrix ring over a commutative local ring strongly clean?
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
When is the 2×2 matrix ring over a commutative local ring strongly clean?
چکیده انگلیسی

A ring R with identity is called strongly clean if every element of R is the sum of an idempotent and a unit that commute. Local rings are strongly clean. It is unknown when a matrix ring is strongly clean. However it is known from [J. Chen, X. Yang, Y. Zhou, On strongly clean matrix and triangular matrix rings, preprint, 2005] that for any prime number p, the 2×2 matrix ring is strongly clean where is the ring of p-adic integers, but M2(Z(p)) is not strongly clean where Z(p) is the localization of Z at the prime ideal generated by p. Let R be a commutative local ring. A criterion in terms of solvability of a simple quadratic equation in R is obtained for M2(R) to be strongly clean. As consequences, M2(R) is strongly clean iff M2(R〚x〛) is strongly clean iff M2(R[x]/(xn)) is strongly clean iff M2(RC2) is strongly clean.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 301, Issue 1, 1 July 2006, Pages 280-293