کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4589317 1334218 2006 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distinguishing labellings of group action on vector spaces and graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Distinguishing labellings of group action on vector spaces and graphs
چکیده انگلیسی

Suppose Γ is a group acting on a set X. A k-labeling of X is a mapping . A labeling c of X is distinguishing (with respect to the action of Γ) if for any g∈Γ, g≠idX, there exists an element x∈X such that c(x)≠c(g(x)). The distinguishing number, DΓ(X), of the action of Γ on X is the minimum k for which there is a k-labeling which is distinguishing. This paper studies the distinguishing number of the linear group GLn(K) over a field K acting on the vector space Kn and the distinguishing number of the automorphism group Aut(G) of a graph G acting on V(G). The latter is called the distinguishing number of the graph G and is denoted by D(G). We determine the value of DGLn(K)(Kn) for all fields K and integers n. For the distinguishing number of graphs, we study the possible value of the distinguishing number of a graph in terms of its automorphism group, its maximum degree, and other structure properties. It is proved that if Aut(G)=Sn and each orbit of Aut(G) has size less than , then D(G)=⌈n1/k⌉ for some positive integer k. A Brooks type theorem for the distinguishing number is obtained: for any graph G, D(G)⩽Δ(G), unless G is a complete graph, regular complete bipartite graph, or C5. We introduce the notion of uniquely distinguishable graphs and study the distinguishing number of disconnected graphs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 303, Issue 2, 15 September 2006, Pages 626-641