کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4589339 1334219 2006 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combinatorial problems raised from 2-semilattices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Combinatorial problems raised from 2-semilattices
چکیده انگلیسی

The Constraint Satisfaction Problem (CSP) provides a general framework for many combinatorial problems. In [A.A. Bulatov, A.A. Krokhin, P.G. Jeavons, Classifying the complexity of constraints using finite algebras, SIAM J. Comput. 34 (3) (2005) 720–742; P.G. Jeavons, On the algebraic structure of combinatorial problems, Theoret. Comput. Sci. 200 (1998) 185–204] and then in [A.A. Bulatov, P.G. Jeavons, Algebraic structures in combinatorial problems, Technical Report MATH-AL-4-2001, Technische Universität Dresden, Dresden, Germany, 2001], a new approach to the study of the CSP has been developed which uses properties of universal algebras assigned to certain subclasses of the CSP such that the time complexity and other properties of subclasses can be derived from the properties of the assigned algebras. In this paper we briefly survey this approach, and then prove that problem classes corresponding to finite 2-semilattices, that is groupoids satisfying the identities xx=x, xy=yx, x(xy)=(xx)y, can be solved in polynomial time. Making use of this result we classify finite conservative groupoids, and 4-element algebras with minimal clone of term operations with respect to the complexity of the corresponding CSP-class.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 298, Issue 2, 15 April 2006, Pages 321-339