کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4589499 1334230 2006 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Larson–Sweedler theorem for multiplier Hopf algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The Larson–Sweedler theorem for multiplier Hopf algebras
چکیده انگلیسی

Any finite-dimensional Hopf algebra has a left and a right integral. Conversely, Larsen and Sweedler showed that, if a finite-dimensional algebra with identity and a comultiplication with counit has a faithful left integral, it has to be a Hopf algebra.In this paper, we generalize this result to possibly infinite-dimensional algebras, with or without identity. We have to leave the setting of Hopf algebras and work with multiplier Hopf algebras. Moreover, whereas in the finite-dimensional case, there is a complete symmetry between the bialgebra and its dual, this is no longer the case in infinite dimensions. Therefore we consider a direct version (with integrals) and a dual version (with cointegrals) of the Larson–Sweedler theorem.We also add some results about the antipode. Furthermore, in the process of this paper, we obtain a new approach to multiplier Hopf algebras with integrals.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 296, Issue 1, 1 February 2006, Pages 75-95