کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4595790 | 1336135 | 2016 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the cohomology of linear groups over imaginary quadratic fields
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let Γ be the group GLN(OD)GLN(OD), where ODOD is the ring of integers in the imaginary quadratic field with discriminant D<0D<0. In this paper we investigate the cohomology of Γ for N=3,4N=3,4 and for a selection of discriminants: D≥−24D≥−24 when N=3N=3, and D=−3,−4D=−3,−4 when N=4N=4. In particular we compute the integral cohomology of Γ up to p-power torsion for small primes p. Our main tool is the polyhedral reduction theory for Γ developed by Ash [4, Ch. II] and Koecher [24]. Our results extend work of Staffeldt [40], who treated the case N=3N=3, D=−4D=−4. In a sequel [15] to this paper, we will apply some of these results to computations with the K -groups K4(OD)K4(OD), when D=−3,−4D=−3,−4.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 220, Issue 7, July 2016, Pages 2564–2589
Journal: Journal of Pure and Applied Algebra - Volume 220, Issue 7, July 2016, Pages 2564–2589
نویسندگان
Mathieu Dutour Sikirić, Herbert Gangl, Paul E. Gunnells, Jonathan Hanke, Achill Schürmann, Dan Yasaki,