کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595817 1336137 2016 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Descent, fields of invariants, and generic forms via symmetric monoidal categories
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Descent, fields of invariants, and generic forms via symmetric monoidal categories
چکیده انگلیسی

Let W be a finite dimensional algebraic structure (e.g. an algebra) over a field K of characteristic zero. We study forms of W   by using Deligne's Theory of symmetric monoidal categories. We construct a category CWCW, which gives rise to a subfield K0⊆KK0⊆K, which we call the field of invariants of W. This field will be contained in any subfield of K over which W   has a form. The category CWCW is a K0K0-form of RepK¯(Aut(W)), and we use it to construct a generic form W˜ over a commutative K0K0-algebra BWBW (so that forms of W   are exactly the specializations of W˜). This generalizes some generic constructions for central simple algebras and for H-comodule algebras. We give some concrete examples arising from associative algebras and H-comodule algebras. As an application, we also explain how one can use the construction to classify two-cocycles on some finite dimensional Hopf algebras.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 220, Issue 6, June 2016, Pages 2077–2111
نویسندگان
,