کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595845 1336138 2016 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Osculation for conic fibrations
ترجمه فارسی عنوان
تقسیم فیبریات مخروطی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

Smooth projective surfaces fibered in conics over a smooth curve are investigated with respect to their k  -th osculatory behavior. Due to the bound for the dimension of their osculating spaces they do not differ at all from a general surface for k=2k=2, while their structure plays a significant role for k≥3k≥3. The dimension of the osculating space at any point is studied taking into account the possible existence of curves of low degree transverse to the fibers, and several examples are discussed to illustrate concretely the various situations arising in this analysis. As an application, a complete description of the osculatory behavior of Castelnuovo surfaces is given. The case k=3k=3 for del Pezzo surfaces is also discussed, completing the analysis done for k=2k=2 in a previous paper by the authors (2001). Moreover, for conic fibrations X⊂PNX⊂PN whose k  -th inflectional locus has the expected codimension, a precise description of this locus is provided in terms of Chern classes. In particular, for N=8N=8, it turns out that either X   is hypo-osculating for k=3k=3, or its third inflectional locus is 1-dimensional.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 220, Issue 8, August 2016, Pages 2852–2878
نویسندگان
, ,