کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595861 1336139 2015 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pointfree pointwise suprema in unital archimedean ℓ-groups
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Pointfree pointwise suprema in unital archimedean ℓ-groups
چکیده انگلیسی

We generalize the concept of the pointwise supremum of real-valued functions to the pointfree setting. The concept itself admits a direct and intuitive formulation which makes no mention of points. But our aim here is to investigate pointwise suprema of subsets of RLRL, the family of continuous real valued functions on a locale, or pointfree space.Thus our setting is the category W of archimedean lattice-ordered groups (ℓ-groups) with designated weak order unit, with morphisms which preserve the group and lattice operations and take units to units. This is an appropriate context for this investigation because every W-object can be canonically represented as a subobject of some RLRL.We show that the suprema which are pointwise in the Madden representation can be characterized purely algebraically. They are precisely the suprema which are context-free, in the sense of being preserved by every W homomorphism out of G. We show that closure under such suprema characterizes the W-kernels among the convex ℓ-subgroups. Finally, we prove that all existing joins in a W-object G are pointwise iff its Madden frame L is boolean, and that all existing countable joins in G are pointwise if L is a P-frame, but not conversely.This leads up to the appropriate analog of the Nakano–Stone Theorem: a (completely regular) locale L   has the feature that RLRL is conditionally pointwise complete (σ  -complete), i.e., every bounded (countable) family from RLRL has a pointwise supremum in RLRL, iff L is boolean (a P-locale).We adopt a maximally broad definition of unconditional pointwise completeness (σ-completeness): a divisible W-object G is pointwise complete (σ-complete) if it contains a pointwise supremum for every subset which has a supremum in any extension. We show that the pointwise complete (σ-complete) W-objects are those of the form RLRL for L a boolean locale (P-locale). Finally, we show that a W-object G is pointwise σ-complete iff it is epicomplete.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 219, Issue 11, November 2015, Pages 4793–4815
نویسندگان
, , ,