| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4595928 | 1336141 | 2015 | 24 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Braided autoequivalences and quantum commutative bi-Galois objects
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													اعداد جبر و تئوری 
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Let (H,R) be a quasitriangular weak Hopf algebra over a field k. We show that there is a braided monoidal isomorphism between the Yetter-Drinfeld module category YDHH over H and the category of comodules over some braided Hopf algebra HR in the category MH. Based on this isomorphism, we prove that every braided bi-Galois object A over the braided Hopf algebra HR defines a braided autoequivalence of the category YDHH if and only if A is quantum commutative. In case H is semisimple over an algebraically closed field, i.e. the fusion case, then every braided autoequivalence of YDHH trivializable on MH is determined by such a quantum commutative Galois object. The quantum commutative Galois objects in MH form a group measuring the Brauer group of (H,R) as studied in [21] in the Hopf algebra case.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 219, Issue 9, September 2015, Pages 4144-4167
											Journal: Journal of Pure and Applied Algebra - Volume 219, Issue 9, September 2015, Pages 4144-4167
نویسندگان
												Haixing Zhu, Yinhuo Zhang,