کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4596024 1336146 2015 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Splitting torsion pairs over pure semisimple rings
ترجمه فارسی عنوان
تقسیم جفت پیچشی روی حلقه های نیمه جامد خالص
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

Let R   be a left pure semisimple ring, and (D,C)(D,C) be a splitting torsion pair of R  -ind, i.e. (D,C)(D,C) is a partition of the family of all indecomposable left R  -modules such that HomR(D,C)=0HomR(D,C)=0 whenever D∈DD∈D and C∈CC∈C. Suppose further that DD contains all indecomposable injective left R-modules. We show that for each module M   in CC, the endomorphism ring of M   is a division ring and ExtR1(M,M)=0. Let W   be the direct sum of all Ext-injective modules in CC and all indecomposable projective modules in DD. If W   is endofinite, then there is an Ext-injective module in CC which is the source of a left almost split morphism in R-mod. It is also proved that W is a tilting module, and if R is hereditary, then W has a hereditary endomorphism ring. As consequences, we recover with new proofs several recent results on left pure semisimple rings R. When R is left pure semisimple hereditary indecomposable, splitting torsion pairs and tilting modules over R can be characterized using the Ext-injective partition of R-mod. In particular, when R is left pure semisimple hereditary indecomposable with only two simple modules, we give a complete description of the distribution of indecomposable left R-modules, and their Gabriel–Roiter measures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 219, Issue 7, July 2015, Pages 2637–2657
نویسندگان
, ,