کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4596067 1336148 2015 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tower sets and other configurations with the Cohen-Macaulay property
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Tower sets and other configurations with the Cohen-Macaulay property
چکیده انگلیسی
Some well-known arithmetically Cohen-Macaulay configurations of linear varieties in Pr as k-configurations, partial intersections and star configurations are generalized by introducing tower schemes. Tower schemes are reduced schemes that are a finite union of linear varieties whose support set is a suitable finite subset of Z+c called tower set. We prove that the tower schemes are arithmetically Cohen-Macaulay and we compute their Hilbert function in terms of their support. Afterwards, since even in codimension 2 not every arithmetically Cohen-Macaulay squarefree monomial ideal is the ideal of a tower scheme, we slightly extend this notion by defining generalized tower schemes (in codimension 2). Our main result consists in showing that the support of these configurations (the generalized tower set) gives a combinatorial characterization of the primary decomposition of the arithmetically Cohen-Macaulay squarefree monomial ideals.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 219, Issue 6, June 2015, Pages 2260-2278
نویسندگان
, , ,