کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4596173 1336153 2015 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Witt's extension theorem for quadratic spaces over semiperfect rings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Witt's extension theorem for quadratic spaces over semiperfect rings
چکیده انگلیسی

We prove that every isometry between (not-necessarily orthogonal) summands of a unimodular quadratic space over a semiperfect ring can be extended an isometry of the whole quadratic space. The same result was proved by Reiter for the broader class of semilocal rings, but with certain restrictions on the base modules, which cannot be removed in general.Our result implies that unimodular quadratic spaces over semiperfect rings cancel from orthogonal sums. This improves a cancellation result of Quebbemann, Scharlau and Schulte, which applies to quadratic spaces over hermitian categories. Combining this with other known results yields further cancellation theorems. For instance, we prove cancellation of (1) systems of sesquilinear forms over henselian local rings, and (2) non-unimodular hermitian forms over (arbitrary) valuation rings.Finally, we determine the group generated by the reflections of a unimodular quadratic space over a semiperfect ring.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 219, Issue 12, December 2015, Pages 5673–5696
نویسندگان
,