کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4596511 1336169 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hopf subalgebras and tensor powers of generalized permutation modules
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Hopf subalgebras and tensor powers of generalized permutation modules
چکیده انگلیسی

By means of a certain module V and its tensor powers in a finite tensor category, we study a question of whether the depth of a Hopf subalgebra R of a finite-dimensional Hopf algebra H is finite. The module V is the counit representation induced from R to H, which is then a generalized permutation module, as well as a module coalgebra. We show that if in the subalgebra pair either Hopf algebra has finite representation type, or V is either semisimple with R∗ pointed, projective, or its tensor powers satisfy a Burnside ring formula over a finite set of Hopf subalgebras including R, then the depth of R in H is finite. One assigns a nonnegative integer depth to V, or any other H-module, by comparing the truncated tensor algebras of V in a finite tensor category and so obtains upper and lower bounds for depth of a Hopf subalgebra. For example, a relative Hopf restricted module has depth 1, and a permutation module of a corefree subgroup has depth less than the number of values of its character.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 218, Issue 2, February 2014, Pages 367-380