کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4596606 1336174 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph
چکیده انگلیسی

Let R be a commutative ring with 1≠0. The zero-divisor graph Γ(R) of R is the (undirected) graph whose vertices consist of the nonzero zero-divisors of R such that distinct vertices x and y are adjacent if and only if xy=0. The relation on R given by r∼s if and only if annR(r)=annR(s) is an equivalence relation. The compressed zero-divisor graph ΓE(R) is the (undirected) graph whose vertices are the equivalence classes induced by ∼ other than [0] and [1], such that distinct vertices [r] and [s] are adjacent in ΓE(R) if and only if rs=0. We investigate ΓE(R) when R is reduced and are interested in when ΓE(R)≅Γ(S) for a reduced ring S. Among other results, it is shown that ΓE(R)≅Γ(B) for some Boolean ring B if and only if Γ(R) (and hence ΓE(R)) is a complemented graph, and this is equivalent to the total quotient ring of R being a von Neumann regular ring.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 216, Issue 7, July 2012, Pages 1626-1636