کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4596756 1336184 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integrally closed ideals in regular local rings of dimension two
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Integrally closed ideals in regular local rings of dimension two
چکیده انگلیسی

Let I be an integrally closed -primary ideal of a two-dimensional regular local ring . By Zariski’s unique factorization theorem, the ideal I factors as , where the si are positive integers and the Ii are distinct simple integrally closed ideals. For each integer i with 1≤i≤h, let Vi denote the unique Rees valuation ring associated with Ii, and let vi denote the Rees valuation associated with Vi. Assume that the field k is relatively algebraically closed in the residue field k(vi) of Vi. Let J=(a,b)R be a reduction of I and let denote the image of in the residue field k(vi) of Vi. We prove that . Assume that (e,f)R is a reduction of Ii. We prove that there exists a minimal generating set {gesi,gesi−1f,…,gfsi,ξsi+1,…,ξr} for I, where with and vi(ξp)>vi(I) for p with si+1≤p≤r. There exists such that Vi=R[It]Qi∩Q(R). We prove that the quotient ring R[It]/Qi is normal Cohen–Macaulay with minimal multiplicity at its maximal homogeneous ideal with this multiplicity being si. In particular, R[It]/Qi is regular if and only if si=1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 216, Issue 1, January 2012, Pages 1-11