کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4596783 | 1336185 | 2010 | 20 صفحه PDF | دانلود رایگان |

Let D be the ring of differential operators on a smooth irreducible affine variety X over C, or, more generally, the enveloping algebra of any locally free Lie algebroid on X. The category of finitely generated graded modules of the Rees algebra has a natural quotient category PD which imitates the category of modules on Proj of a graded commutative ring. We show that the derived category Db(PD) is equivalent to the derived category of finitely generated modules of a sheaf of algebras E on X which is coherent over X. This generalizes the usual Beilinson equivalence for projective space, and also the Beilinson equivalence for differential operators on a smooth curve used by Ben-Zvi and Nevins in [6] to describe the moduli space of left ideals in D.
Journal: Journal of Pure and Applied Algebra - Volume 214, Issue 12, December 2010, Pages 2124-2143