کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4596789 1336185 2010 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the arithmetic of tame monoids with applications to Krull monoids and Mori domains
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the arithmetic of tame monoids with applications to Krull monoids and Mori domains
چکیده انگلیسی

Let H be an atomic monoid (e.g., the multiplicative monoid of a noetherian domain). For an element b∈H, let ω(H,b) be the smallest  N∈N0∪{∞} having the following property: if  n∈N and  a1,…,an∈H are such that b divides  a1⋅…⋅an, then b already divides a subproduct of a1⋅…⋅an consisting of at most N factors. The monoid H is called tame if . This is a well-studied property in factorization theory, and for various classes of domains there are explicit criteria for being tame. In the present paper, we show that, for a large class of Krull monoids (including all Krull domains), the monoid is tame if and only if the associated Davenport constant is finite. Furthermore, we show that tame monoids satisfy the Structure Theorem for Sets of Lengths. That is, we prove that in a tame monoid there is a constant M such that the set of lengths of any element is an almost arithmetical multiprogression with bound M.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 214, Issue 12, December 2010, Pages 2199-2218