کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4596803 1336186 2011 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Differential Algebra and Liouvillian first integrals of foliations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Differential Algebra and Liouvillian first integrals of foliations
چکیده انگلیسی

Intuitively, a complex Liouvillian function is one that is obtained from complex rational functions by a finite process of integrations, exponentiations and algebraic operations. In the framework of ordinary differential equations the study of equations admitting Liouvillian solutions is related to the study of ordinary differential equations that can be integrated by the use of elementary functions, that is, functions appearing in the Differential Calculus. A more precise and geometrical approach to this problem naturally leads us to consider the theory of foliations. This paper is devoted to the study of foliations that admit a Liouvillian first integral. We study holomorphic foliations (of dimension or codimension one) that admit a Liouvillian first integral. We extend results of Singer (1992) [20], related to Camacho and Scárdua (2001) [4], to foliations on compact manifolds, Stein manifolds, codimension-one projective foliations and germs of foliations as well.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 215, Issue 5, May 2011, Pages 764-788