کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4596815 1336186 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Levels in the toposes of simplicial sets and cubical sets
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Levels in the toposes of simplicial sets and cubical sets
چکیده انگلیسی

The essential subtoposes of a fixed topos form a complete lattice, which gives rise to the notion of a level in a topos. In the familiar example of simplicial sets, levels coincide with dimensions and give rise to the usual notions of n-skeletal and n-coskeletal simplicial sets. In addition to the obvious ordering, the levels provide a stricter means of comparing the complexity of objects, which is determined by the answer to the following question posed by Bill Lawvere: when does n-skeletal imply k-coskeletal? This paper, which subsumes earlier unpublished work of some of the authors, answers this question for several toposes of interest to homotopy theory and higher category theory: simplicial sets, cubical sets, and reflexive globular sets. For the latter, n-skeletal implies (n+1)-coskeletal but for the other two examples the situation is considerably more complicated: n-skeletal implies (2n−1)-coskeletal for simplicial sets and 2n-coskeletal for cubical sets, but nothing stronger. In a discussion of further applications, we prove that n-skeletal cyclic sets are necessarily (2n+1)-coskeletal.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 215, Issue 5, May 2011, Pages 949-961