کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4596823 1336186 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Compactifications of rational maps, and the implicit equations of their images
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Compactifications of rational maps, and the implicit equations of their images
چکیده انگلیسی

In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify into an (n−1)-dimensional projective arithmetically Cohen–Macaulay subscheme of some . One particular interesting compactification of is the toric variety associated to the Newton polytope of the polynomials defining f. We consider two different compactifications for the codomain of f: and . In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], , Laurent Busé et al. (2009) [9], , Laurent Busé and Marc Dohm (2007) [11], , Nicolás Botbol et al. (2009) [5], and Nicolás Botbol (2009) [4].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 215, Issue 5, May 2011, Pages 1053-1068