کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4597054 1336199 2009 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Invariant chiral differential operators and the W3W3 algebra
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Invariant chiral differential operators and the W3W3 algebra
چکیده انگلیسی

Attached to a vector space VV is a vertex algebra S(V)S(V) known as the βγβγ-system or algebra of chiral differential operators on VV. It is analogous to the Weyl algebra D(V)D(V), and is related to D(V)D(V) via the Zhu functor. If GG is a connected Lie group with Lie algebra gg, and VV is a linear GG-representation, there is an action of the corresponding affine algebra on S(V)S(V). The invariant space S(V)g[t]S(V)g[t] is a commutant subalgebra of S(V)S(V), and plays the role of the classical invariant ring D(V)GD(V)G. When GG is an abelian Lie group acting diagonally on VV, we find a finite set of generators for S(V)g[t]S(V)g[t], and show that S(V)g[t]S(V)g[t] is a simple vertex algebra and a member of a Howe pair. The Zamolodchikov W3W3 algebra with c=−2c=−2 plays a fundamental role in the structure of S(V)g[t]S(V)g[t].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 213, Issue 5, May 2009, Pages 632–648
نویسندگان
,