کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4597062 1336199 2009 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Injective hulls with distinct ring structures
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Injective hulls with distinct ring structures
چکیده انگلیسی

It is well known from Osofsky’s work that the injective hull E(RR)E(RR) of a ring RR need not have a ring structure compatible with its RR-module scalar multiplication. A closely related question is: if E(RR)E(RR) has a ring structure and its multiplication extends its RR-module scalar multiplication, must the ring structure be unique? In this paper, we utilize the properties of Morita duality to explicitly describe an injective hull of a ring RR with R=Q(R)R=Q(R) (where Q(R)Q(R) is the maximal right ring of quotients of RR) such that every injective hull of RRRR has (possibly infinitely many) distinct compatible ring structures which are mutually ring isomorphic and quasi-Frobenius. Further, these rings have the property that the ring structures for E(RR)E(RR) also are ring structures on E(RR)E(RR).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 213, Issue 5, May 2009, Pages 732–736
نویسندگان
, , , ,