کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4597114 | 1336201 | 2011 | 12 صفحه PDF | دانلود رایگان |

We begin a study of torsion theories for representations of finitely generated algebras U over a field containing a finitely generated commutative Harish-Chandra subalgebra Γ. This is an important class of associative algebras, which includes all finite W-algebras of type A over an algebraically closed field of characteristic zero, in particular, the universal enveloping algebra of (or ) for all n. We show that any Γ-torsion theory defined by the coheight of the prime ideals of Γ is liftable to U. Moreover, for any simple U-module M, all associated prime ideals of M in have the same coheight. Hence, the coheight of these associated prime ideals is an invariant of a given simple U-module. This implies the stratification of the category of U-modules controlled by the coheight of the associated prime ideals of Γ. Our approach can be viewed as a generalization of the classical paper by Block (1981) [4]; it allows, in particular, to study representations of beyond the classical category of weight or generalized weight modules.
Journal: Journal of Pure and Applied Algebra - Volume 215, Issue 12, December 2011, Pages 2937-2948