کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4597231 | 1336206 | 2010 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Pseudosymmetric braidings, twines and twisted algebras
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A laycle is the categorical analogue of a lazy cocycle. Twines (introduced by Bruguières) and strong twines (as introduced by the authors) are laycles satisfying some extra conditions. If c is a braiding, the double braiding c2 is always a twine; we prove that it is a strong twine if and only if c satisfies a sort of modified braid relation (we call such c pseudosymmetric, as any symmetric braiding satisfies this relation). It is known that the category of Yetter-Drinfeld modules over a Hopf algebra H is symmetric if and only if H is trivial; we prove that the Yetter-Drinfeld category HYDH over a Hopf algebra H is pseudosymmetric if and only if H is commutative and cocommutative. We introduce as well the Hopf algebraic counterpart of pseudosymmetric braidings under the name pseudotriangular structures and prove that all quasitriangular structures on the 2n+1-dimensional pointed Hopf algebras E(n) are pseudotriangular. We observe that a laycle on a monoidal category induces a so-called pseudotwistor on every algebra in the category, and we obtain some general results (and give some examples) concerning pseudotwistors, inspired by the properties of laycles and twines.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 214, Issue 6, June 2010, Pages 867-884
Journal: Journal of Pure and Applied Algebra - Volume 214, Issue 6, June 2010, Pages 867-884
نویسندگان
Florin Panaite, Mihai D. Staic, Freddy Van Oystaeyen,