کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4597272 1336208 2011 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mesh geometries of root orbits of integral quadratic forms
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Mesh geometries of root orbits of integral quadratic forms
چکیده انگلیسی

Integral quadratic forms q:Zn→Z, with n≥1, and the sets Rq(d)={v∈Zn;q(v)=d}, with d∈Z, of their integral roots are studied by means of mesh translation quivers defined by Z-bilinear morsifications bA:Zn×Zn→Z of q, with Z-regular matrices A∈Mn(Z). Mesh geometries of roots of positive definite quadratic forms q:Zn→Z are studied in connection with root mesh quivers of forms associated to Dynkin diagrams An,Dn,E6,E7,E8 and the Auslander–Reiten quivers of the derived category Db(R) of path algebras R=KQ of Dynkin quivers Q. We introduce the concepts of a Z-morsification bA of a quadratic form q, a weighted ΦA-mesh of vectors in Zn, and a weighted ΦA-mesh orbit translation quiver Γ(Rq,ΦA) of vectors in Zn, where Rq≔Rq(1) and ΦA:Zn→Zn is the Coxeter isomorphism defined by A. The existence of mesh geometries on Rq is discussed. It is shown that, under some assumptions on the morsification bA:Zn×Zn→Z, the set admit a ΦA-orbit mesh quiver , where ΦA:Zn→Zn is the Coxeter isomorphism defined by A. Moreover, splits into three infinite connected components , , and , where are isomorphic to a translation quiver Z⋅Δ, with Δ an extended Dynkin quiver, and has the shape of a sand–glass tube.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 215, Issue 1, January 2011, Pages 13-34