کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4597274 | 1336208 | 2011 | 9 صفحه PDF | دانلود رایگان |

Raikov’s conjecture states that semi-abelian categories are quasi-abelian. A first counterexample is contained in a paper of Bonet and Dierolf who considered the category of bornological locally convex spaces. We prove that every semi-abelian category I admits a left essential embedding into a quasi-abelian category Kl(I) such that I can be recovered from Kl(I) by localization. Conversely, it is shown that left essential full subcategories I of a quasi-abelian category are semi-abelian, and a criterion for I to be quasi-abelian is given. Applied to categories of locally convex spaces, the criterion shows that barreled or bornological spaces are natural counterexamples to Raikov’s conjecture. Using a dual argument, the criterion leads to a simplification of Bonet and Dierolf’s example.
Journal: Journal of Pure and Applied Algebra - Volume 215, Issue 1, January 2011, Pages 44-52