کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4597284 1336209 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Higher syzygies of hyperelliptic curves
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Higher syzygies of hyperelliptic curves
چکیده انگلیسی

Let XX be a hyperelliptic curve of arithmetic genus gg and let f:X→P1f:X→P1 be the hyperelliptic involution map of XX. In this paper we study higher syzygies of linearly normal embeddings of XX of degree d≤2gd≤2g. Note that the minimal free resolution of XX of degree ≥2g+1≥2g+1 is already completely known. Let A=f∗OP1(1)A=f∗OP1(1), and let LL be a very ample line bundle on XX of degree d≤2gd≤2g. For m=max{t∈Z∣H0(X,L⊗A−t)≠0}, we call the pair (m,d−2m)(m,d−2m)the factorization type of  LL. Our main result is that the Hartshorne–Rao module and the graded Betti numbers of the linearly normal curve embedded by |L||L| are precisely determined by the factorization type of LL.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 214, Issue 2, February 2010, Pages 101–111
نویسندگان
,