کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4597313 1336211 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On Singerman symmetries of a class of Belyi Riemann surfaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On Singerman symmetries of a class of Belyi Riemann surfaces
چکیده انگلیسی

By virtue of the Belyi Theorem an algebraic curve can be defined over the algebraic numbers if and only if the corresponding Riemann surface can be uniformized by a subgroup of a Fuchsian triangle group. Such surfaces are known as Belyi surfaces and an important class of them consists of Riemann surfaces having the so-called large group of automorphisms. Necessary and sufficient algebraic conditions for these surfaces to be symmetric were found by Singerman in the middle of the seventies and, by a recent result of Köck and Singerman, the algebraic numbers above can be chosen to be real if and only if the respective surface is symmetric. The aim of this paper is to give, in similar terms, the formulas for the number of ovals of the corresponding symmetries, which we refer to as the Singerman symmetries.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 213, Issue 10, October 2009, Pages 1905–1910
نویسندگان
,