کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4597332 1336212 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distance bounds for algebraic geometric codes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Distance bounds for algebraic geometric codes
چکیده انگلیسی

Various methods have been used to obtain improvements of the Goppa lower bound for the minimum distance of an algebraic geometric code. The main methods divide into two categories, and all but a few of the known bounds are special cases of either the Lundell–McCullough floor bound or the Beelen order bound. The exceptions are recent improvements of the floor bound by Güneri, Stichtenoth, and Taskin, and by Duursma and Park, and of the order bound by Duursma and Park, and by Duursma and Kirov. In this paper, we provide short proofs for all floor bounds and most order bounds in the setting of the van Lint and Wilson AB method. Moreover, we formulate unifying theorems for order bounds and formulate the DP and DK order bounds as natural but different generalizations of the Feng–Rao bound for one-point codes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 215, Issue 8, August 2011, Pages 1863-1878