کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4597488 1336218 2010 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Coactions on Hochschild homology of Hopf–Galois extensions and their coinvariants
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Coactions on Hochschild homology of Hopf–Galois extensions and their coinvariants
چکیده انگلیسی

Let B⊆AB⊆A be an HH-Galois extension, where HH is a Hopf algebra over a field KK. If MM is a Hopf bimodule then HH∗(A,M), the Hochschild homology of AA with coefficients in MM, is a right comodule over the coalgebra CH=H/[H,H]CH=H/[H,H]. Given an injective left CHCH-comodule VV, our aim is to understand the relationship between HH∗(A,M)□CHV and HH∗(B,M□CHV). The roots of this problem can be found in Lorenz (1994) [15], where HH∗(A,A)G and HH∗(B,B) are shown to be isomorphic for any centrally GG-Galois extension. To approach the above mentioned problem, in the case when AA is a faithfully flat BB-module and HH satisfies some technical conditions, we construct a spectral sequence TorpRH(K,HHq(B,M□CHV))⟹HHp+q(A,M)□CHV, where RHRH denotes the subalgebra of cocommutative elements in HH. We also find conditions on HH such that the edge maps of the above spectral sequence yield isomorphisms K⊗RHHH∗(B,M□CHV)≅HH∗(A,M)□CHV. In the last part of the paper we define centrally Hopf–Galois extensions and we show that for such an extension B⊆AB⊆A, the RHRH-action on HH∗(B,M□CHV) is trivial. As an application, we compute the subspace of HH-coinvariant elements in HH∗(A,M)HH∗(A,M). A similar result is derived for HC∗(A)HC∗(A), the cyclic homology of AA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 214, Issue 9, September 2010, Pages 1654–1677
نویسندگان
, ,