کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4597522 | 1336220 | 2007 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Lie algebras with quadratic dimension equal to 2
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The quadratic dimension of a Lie algebra is defined as the dimension of the linear space spanned by all its invariant non-degenerate symmetric bilinear forms. We prove that a quadratic Lie algebra with quadratic dimension equal to 2 is a local Lie algebra, this is to say, it admits a unique maximal ideal. We describe local quadratic Lie algebras using the notion of double extension and characterize those with quadratic dimension equal to 2 by the study of the centroid of such Lie algebras. We also give some necessary or sufficient conditions for a Lie algebra to have quadratic dimension equal to 2. Examples of local Lie algebras with quadratic dimension larger than 2 are given.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 209, Issue 3, June 2007, Pages 725–737
Journal: Journal of Pure and Applied Algebra - Volume 209, Issue 3, June 2007, Pages 725–737
نویسندگان
Ignacio Bajo, Saïd Benayadi,