کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4597593 | 1336223 | 2010 | 17 صفحه PDF | دانلود رایگان |

We first propose a generalization of the image conjecture Zhao (submitted for publication) [31], for the commuting differential operators related with classical orthogonal polynomials. We then show that the non-trivial case of this generalized image conjecture is equivalent to a variation of the Mathieu conjecture Mathieu (1997) [21], from integrals of G-finite functions over reductive Lie groups G to integrals of polynomials over open subsets of Rn with any positive measures. Via this equivalence, the generalized image conjecture can also be viewed as a natural variation of the Duistermaat and van der Kallen theorem Duistermaat and van der Kallen (1998) [14] on Laurent polynomials with no constant terms. To put all the conjectures above in a common setting, we introduce what we call the Mathieu subspaces of associative algebras. We also discuss some examples of Mathieu subspaces from other sources and derive some general results on this newly introduced notion.
Journal: Journal of Pure and Applied Algebra - Volume 214, Issue 7, July 2010, Pages 1200-1216