کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4597622 1336225 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Witt ring kernel for a fourth degree field extension and related problems
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The Witt ring kernel for a fourth degree field extension and related problems
چکیده انگلیسی

In the first part of this paper we compute the Witt ring kernel for an arbitrary field extension of degree 4 and characteristic different from 2 in terms of the coefficients of a polynomial determining the extension. In the case where the lower field is not formally real we prove that the intersection of any power nn of its fundamental ideal and the Witt ring kernel is generated by nn-fold Pfister forms.In the second part as an application of the main result we give a criterion for the tensor product of quaternion and biquaternion algebras to have zero divisors. Also we solve the similar problem for three quaternion algebras.In the last part we obtain certain exact Witt group sequences concerning dihedral Galois field extensions. These results heavily depend on some similar cohomological results of Positselski, as well as on the Milnor conjecture, and the Bloch–Kato conjecture for exponent 2, which was proven by Voevodsky.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 214, Issue 1, January 2010, Pages 61–70
نویسندگان
,