کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4597933 | 1336239 | 2006 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Separators of points on algebraic surfaces
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For a finite set of points XâPn and for a given point PâX, the notion of a separator of P in X (a hypersurface containing all the points in X except P) and of the degree of P in X, dXP (the minimum degree of these separators) has been largely studied. In this paper we extend these notions to a set of points X on a projectively normal surface SâPn, considering as separators arithmetically Cohen-Macaulay curves and generalizing the case S=P2 in a natural way. We denote the minimum degree of such curves as dX,SP and we study its relation to dXP. We prove that if S is a variety of minimal degree these two terms are explicitly related by a formula, whereas only an inequality holds for other kinds of surfaces.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 207, Issue 2, October 2006, Pages 319-326
Journal: Journal of Pure and Applied Algebra - Volume 207, Issue 2, October 2006, Pages 319-326
نویسندگان
Laura Bazzotti, Marta Casanellas,