کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4597933 1336239 2006 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Separators of points on algebraic surfaces
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Separators of points on algebraic surfaces
چکیده انگلیسی
For a finite set of points X⊆Pn and for a given point P∈X, the notion of a separator of P in X (a hypersurface containing all the points in X except P) and of the degree of P in X, dXP (the minimum degree of these separators) has been largely studied. In this paper we extend these notions to a set of points X on a projectively normal surface S⊆Pn, considering as separators arithmetically Cohen-Macaulay curves and generalizing the case S=P2 in a natural way. We denote the minimum degree of such curves as dX,SP and we study its relation to dXP. We prove that if S is a variety of minimal degree these two terms are explicitly related by a formula, whereas only an inequality holds for other kinds of surfaces.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 207, Issue 2, October 2006, Pages 319-326
نویسندگان
, ,