کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598017 1336245 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exceptional points in the elliptic–hyperelliptic locus
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Exceptional points in the elliptic–hyperelliptic locus
چکیده انگلیسی

An exceptional point in the moduli space of compact Riemann surfaces is a unique surface class whose full automorphism group acts with a triangular signature. A surface admitting a conformal involution with quotient an elliptic curve is called elliptic–hyperelliptic; one admitting an anticonformal involution is called symmetric. In this paper, we determine, up to topological conjugacy, the full group of conformal and anticonformal automorphisms of a symmetric exceptional point in the elliptic–hyperelliptic locus. We determine the number of ovals of any symmetry of such a surface. We show that while the elliptic–hyperelliptic locus can contain an arbitrarily large number of exceptional points, no more than four are symmetric.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 212, Issue 6, June 2008, Pages 1415–1426
نویسندگان
, ,