| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4598017 | 1336245 | 2008 | 12 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Exceptional points in the elliptic–hyperelliptic locus
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													اعداد جبر و تئوری 
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												An exceptional point in the moduli space of compact Riemann surfaces is a unique surface class whose full automorphism group acts with a triangular signature. A surface admitting a conformal involution with quotient an elliptic curve is called elliptic–hyperelliptic; one admitting an anticonformal involution is called symmetric. In this paper, we determine, up to topological conjugacy, the full group of conformal and anticonformal automorphisms of a symmetric exceptional point in the elliptic–hyperelliptic locus. We determine the number of ovals of any symmetry of such a surface. We show that while the elliptic–hyperelliptic locus can contain an arbitrarily large number of exceptional points, no more than four are symmetric.
ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 212, Issue 6, June 2008, Pages 1415–1426
											Journal: Journal of Pure and Applied Algebra - Volume 212, Issue 6, June 2008, Pages 1415–1426
نویسندگان
												Ewa Tyszkowska, Anthony Weaver,