کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598039 1336249 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Identifications in modular group algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Identifications in modular group algebras
چکیده انگلیسی

Let GG be a group, SS a subgroup of GG, and FF a field of characteristic pp. We denote the augmentation ideal of the group algebra FGFG by ω(G)ω(G). The Zassenhaus–Jennings–Lazard series of GG is defined by Dn(G)=G∩(1+ωn(G))Dn(G)=G∩(1+ωn(G)). We give a constructive proof of a theorem of Quillen stating that the graded algebra associated with FGFG is isomorphic as an algebra to the enveloping algebra of the restricted Lie algebra associated with the Dn(G)Dn(G). We then extend a theorem of Jennings that provides a basis for the quotient ωn(G)/ωn+1(G)ωn(G)/ωn+1(G) in terms of a basis of the restricted Lie algebra associated with the Dn(G)Dn(G). We shall use these theorems to prove the main results of this paper. For GG a finite pp-group and nn a positive integer, we prove that G∩(1+ω(G)ωn(S))=Dn+1(S)G∩(1+ω(G)ωn(S))=Dn+1(S) and G∩(1+ω2(G)ωn(S))=Dn+2(S)Dn+1(S∩D2(G))G∩(1+ω2(G)ωn(S))=Dn+2(S)Dn+1(S∩D2(G)). The analogous results for integral group rings of free groups have been previously obtained by Gruenberg, Hurley, and Sehgal.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 212, Issue 10, October 2008, Pages 2182–2189
نویسندگان
,