کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598107 1336256 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Representations of positive polynomials on noncompact semialgebraic sets via KKT ideals
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Representations of positive polynomials on noncompact semialgebraic sets via KKT ideals
چکیده انگلیسی

This paper studies the representation of a positive polynomial f(x)f(x) on a noncompact semialgebraic set S={x∈Rn:g1(x)≥0,…,gs(x)≥0}S={x∈Rn:g1(x)≥0,…,gs(x)≥0} modulo its KKT (Karush–Kuhn–Tucker) ideal. Under the assumption that the minimum value of f(x)f(x) on SS is attained at some KKT point, we show that f(x)f(x) can be represented as sum of squares (SOS) of polynomials modulo the KKT ideal if f(x)>0f(x)>0 on SS; furthermore, when the KKT ideal is radical, we argue that f(x)f(x) can be represented as a sum of squares (SOS) of polynomials modulo the KKT ideal if f(x)≥0f(x)≥0 on SS. This is a generalization of results in [J. Nie, J. Demmel, B. Sturmfels, Minimizing polynomials via sum of squares over the gradient ideal, Mathematical Programming (in press)], which discusses the SOS representations of nonnegative polynomials over gradient ideals.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 209, Issue 1, April 2007, Pages 189–200
نویسندگان
, , ,