کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598233 1336270 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized Serre relations for Lie algebras associated with positive unit forms
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Generalized Serre relations for Lie algebras associated with positive unit forms
چکیده انگلیسی

Every semisimple Lie algebra defines a root system on the dual space of a Cartan subalgebra and a Cartan matrix, which expresses the dual of the Killing form on a root base. Serre’s Theorem [J.-P. Serre, Complex Semisimple Lie Algebras (G.A. Jones, Trans.), Springer-Verlag, New York, 1987] gives then a representation of the given Lie algebra in generators and relations in terms of the Cartan matrix.In this work, we generalize Serre’s Theorem to give an explicit representation in generators and relations for any simply laced semisimple Lie algebra in terms of a positive quasi-Cartan matrix. Such a quasi-Cartan matrix expresses the dual of the Killing form for a ZZ-base of roots. Here, by a ZZ-base of roots, we mean a set of linearly independent roots which generate all roots as linear combinations with integral coefficients.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 211, Issue 2, November 2007, Pages 360–373
نویسندگان
, ,