کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598262 1336271 2006 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Group homology and Connes’ periodicity operator
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Group homology and Connes’ periodicity operator
چکیده انگلیسی

Given a commutative ring kk, a group GG and an element g∈Gg∈G of infinite order with centralizer C(g)C(g), we study the inverse system⋯⟶H2n(C(g)/〈g〉,k)⟶H2n-2(C(g)/〈g〉,k)⟶⋯⋯⟶H2n(C(g)/〈g〉,k)⟶H2n-2(C(g)/〈g〉,k)⟶⋯arising from Burghelea's computation [D. Burghelea, The cyclic homology of group rings, Comment. Math. Helv. 60 (1985) 354–365] of the cyclic homology of the group algebra kGkG and Connes’ periodicity operator S:HC2n(kG)⟶HC2n-2(kG)S:HC2n(kG)⟶HC2n-2(kG). A vanishing theorem for the limit of this inverse system is proved for groups in the class AA introduced in Emmanouil and Passi [A contribution to Bass’ conjecture, J. Group Theory 7 (2004) 409–420], thereby contributing to a conjecture by Burghelea [The cyclic homology of group rings, Comment. Math. Helv. 60 (1985) 354–365]. The homological condition defining the class AA is closely examined; in particular, it is shown that this class properly contains the class studied in Emmanouil [On a class of groups satisfying Bass’ conjecture, Invent. Math. 132 (1998) 307–330].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 205, Issue 2, May 2006, Pages 375–392
نویسندگان
, ,